

Statistical methods for multi-omic data integration

Alessandra Cabassi ISBA 30 June 2021

Motivation

Clustering within the context of precision medicine.

Goal

To use multiple 'omics datasets to find disease subtypes & help clinicians develop more specific treatments.

Multi-omics

Statistical setting and challenges

Multiple data sources relative to the same statistical units.

Challenges:

- Different types of data
- Different layer sizes
- Varying levels of noise
- High computational cost
- Large P small N

Cluster-Of-Clusters Analysis

COCA (Cluster-Of-Clusters Analysis)*

Challenges

- Incorporate uncertainty of cluster allocations.
- Quantify contribution of each data source to the final clustering.

Multiple kernel learning for clustering

Unsupervised KLIC (Kernel Learning Integrative Clustering)

Multiplatform analysis of 12 cancer types

Data: 5 'omic layers, 12 tumour types, 3,527 patients.

Goal: identify cancer subtypes/patients w/ similar molecular profiles.

Hoadley et al. (2014). "Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin". Cell 158.4, pp. 929–944.

ARC | Medical Research Council 6.

Multiplatform analysis of 12 cancer types

Challenge

Extract the most relevant clustering structure.

Summarising/combining PSMs

Posterior similarity matrices are valid kernels.

How to:

- summarise PSMs? \rightarrow Kernel k-means.
- combine multiple PSMs? → Unsupervised KLIC.
- find most relevant clustering structure? → Outcome-guided KLIC.

Outcome-guided KLIC

Goal

Use a variable related to the outcome of interest to determine the kernel weights.

Outcome-guided KLIC (Kernel Learning Integrative Clustering)

Simulation studies

PSMs of 4 datasets with different cluster separability.

Row & columns = statistical units.

Coloured bar on the right = true clustering.

Summarising posterior similarity matrices

Integrative clustering

Multiplatform analysis of 10 cancer types

- Unsupervised KLIC: 9 clusters.
- Outcome-guided KLIC: 27 clusters.

Multiplatform analysis of 10 cancer types

- Common to all approaches:
 - Ability to monitor the influence of each layer on the final outcome.
 - Low computational cost thanks to two-step approaches.

- Common to all approaches:
 - Ability to monitor the influence of each layer on the final outcome.
 - Low computational cost thanks to two-step approaches.
- Unsupervised integration
 - Down-weight noisy datasets and noisy variables.
 - Ability to define kernels based on heuristic/model-based clustering.
 - Ability to combine multiple PSMs.

- Common to all approaches:
 - Ability to monitor the influence of each layer on the final outcome.
 - Low computational cost thanks to two-step approaches.
- Unsupervised integration
 - Down-weight noisy datasets and noisy variables.
 - Ability to define kernels based on heuristic/model-based clustering.
 - Ability to combine multiple PSMs.
- Outcome-guided integration
 - All of the above.
 - Up-weight most relevant layers.
 - Ability to uncover more refined partitions of the data.

- Common to all approaches:
 - Ability to monitor the influence of each layer on the final outcome.
 - Low computational cost thanks to two-step approaches.
- Unsupervised integration
 - Down-weight noisy datasets and noisy variables.
 - Ability to define kernels based on heuristic/model-based clustering.
 - Ability to combine multiple PSMs.
- Outcome-guided integration
 - All of the above.
 - Up-weight most relevant layers.
 - Ability to uncover more refined partitions of the data.
- Real data applications
 - ! Importance of variable selection.
 - ! Need to deal with missing values.

Further research areas

- Model extensions
 - Handling missing values (for regression models and DPMMs)
 - Handling continuous and survival outcomes
- Evaluation and comparison of clustering results
 - Assessment of the similarity of two partitions
 - Choice of the number of clusters
 - Assessment of cluster quality

Publications

- Cabassi, A. and Kirk, P.D.W. (2020). "Multiple kernel learning for integrative consensus clustering of 'omic datasets"
 Bioinformatics. btaa593.
- R packages klic and coca available on CRAN.
- Cabassi, A., Richardson, S., and Kirk, P.D.W. (2020). "Kernel learning approaches for summarising and combining posterior similarity matrices" arxiv preprint, 2009.12852.

Thanks for listening!

- alessandra.cabassi@mrc-bsu.cam.ac.uk
 - ★ alessandracabassi.com
 - **y** @SandyCabassi