M RC Biostatistics Unit

Statistical methods for
multi-omic data integration

Alessandra Cabassi

ISBA
30 June 2021




Motivation

Clustering within the context of precision medicine.

Goal

To use multiple 'omics datasets to
find disease subtypes & help
clinicians develop more specific
treatments.
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Statistical setting and challenges

Multiple data sources relative to the same statistical units.
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Challenges:

e Different types of data
e Different layer sizes

® Varying levels of noise

¢ High computational cost
e Large P small N
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Cluster-Of-Clusters Analysis

COCA (Cluster-Of-Clusters Analysis)*

Step 1 Step 3
Any clustering algo Consensus

Ry
Binar K]
&
Datasets || matrix of | N M .
clusters I_ug
O

Resampling helust

Step 2 Step 4

Challenges
® Incorporate uncertainty of cluster allocations.

® Quantify contribution of each data source to the final clustering.

*TCGA (2012). “Comprehensive molecular portraits of human breast tumours.” Nature 487.7407, pp. 61-70.
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Multiple kernel learning for clustering

Unsupervised KLIC (Kernel Learning Integrative Clustering)
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Multiplatform analysis of 12 cancer types

Data: 5 'omic layers, 12 tumour types, 3,527 patients.
Goal: identify cancer subtypes/patients w/ similar molecular profiles.
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Hoadley et al. (2014). “Multiplatform analysis of 12 cancer types reveals molecular classification within and across
tissues of origin”. Cell 158.4, pp. 929-944.
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Multiplatform analysis of 12 cancer types
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Summarising/combining PSMs

Posterior similarity matrices are valid kernels.

How to:

® summarise PSMs? — Kernel k-means.

® combine multiple PSMs? — Unsupervised KLIC.

¢ find most relevant clustering structure? — Outcome-guided KLIC.
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Outcome-guided KLIC

Goal

Use a variable related to the outcome of interest to determine the

kernel weights.

Outcome-guided KLIC (Kernel Learning Integrative Clustering)

MCMC, CC, ...

SVM

Datasets

Kernels
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Simulation studies

PSMs of 4 datasets with different cluster separability.
Row & columns = statistical units.
Coloured bar on the right = true clustering.
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Summarising posterior similarity matrices
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Integrative clustering

One PSM Unsupervised integration Outcome@uided integration
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Multiplatform analysis of 10 cancer types

® Unsupervised KLIC: 9 clusters.

® Qutcome-guided KLIC: 27 clusters.

WS weighted similarity
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Multiplatform analysis of 10 cancer types
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Main findings and contributions

e Common to all approaches:

- Ability to monitor the influence of each layer on the final outcome.
- Low computational cost thanks to two-step approaches.
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e Common to all approaches:
- Ability to monitor the influence of each layer on the final outcome.
- Low computational cost thanks to two-step approaches.

® Unsupervised integration
- Down-weight noisy datasets and noisy variables.

- Ability to define kernels based on heuristic/model-based clustering.
- Ability to combine multiple PSMs.

Outcome-guided integration

- All of the above.

- Up-weight most relevant layers.

- Ability to uncover more refined partitions of the data.

Real data applications

I Importance of variable selection.
I Need to deal with missing values.
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Further research areas

* Model extensions

- Handling missing values (for regression models and DPMMs)
- Handling continuous and survival outcomes

¢ Evaluation and comparison of clustering results

- Assessment of the similarity of two partitions
- Choice of the number of clusters
- Assessment of cluster quality
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Publications

- Cabassi, A. and Kirk, P.D.W. (2020). “Multiple kernel learning for integrative consensus clustering
of 'omic datasets”
Bioinformatics, btaa593.

- R packages klic and coca available on CRAN.

- Cabassi, A., Richardson, S., and Kirk, P.D.W. (2020). “Kernel learning approaches for
summarising and combining posterior similarity matrices”
arxiv preprint, 2009.12852.
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https://doi.org/10.1093/bioinformatics/btaa593
https://arxiv.org/abs/2009.12852

Thanks for listening!

MRC Biostatistics Unit

% alessandra.cabassi@mrc-bsu.cam.ac.uk
A alessandracabassi.com
W ©SandyCabassi
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