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Motivation

Multi-omic analysis of cardiovascular disease (CVD) risk data
with Dr Denis Seyres and Dr Mattia Frontini – Department of Hæmatology
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Motivation

CVD risk data Cell type Variables Observations

Epigenomics 25600 172
26300 128

Methylomics 26214 193
21442 187

Transcriptomics 11370 203
24224 198

Lipidomics 123 192
Metabolomics 988 200

We need:

• Scalable approximate inference method for mixture models

• That allows to combine different types of data

• And to perform feature selection
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Motivation
Why feature selection?

Example: Mixture of Gaussians
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! Noisy features can degrade the performance of most learning algorithms
Law et al. (2004)
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Motivation
Why feature selection?

Example: Mixture of Gaussians fitted using both features
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! Noisy features can degrade the performance of most learning algorithms
Law et al. (2004)
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Motivation
Why feature selection?

Example: Mixture of Gaussians fitted using only the relevant feature
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! Noisy features can degrade the performance of most learning algorithms
Law et al. (2004)
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Approximate inference
Why?

Given a joint model for our hidden variables z and observed variables x ,
p(x , z), inference about the unknown is through the posterior

p(z |x) =
p(z , x)

p(x)

For most interesting models, the denominator is not tractable, so we appeal
to approximate posterior inference
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Approximate inference
Which type?

Stochastic approximations → Sampling

+ Asymptotically exact

+ Easily applicable general-purpose algorithms

− Computationally expensive

− Storage intensive

Deterministic approximations → Structural assumptions

+ Computationally efficient

+ Efficient representation

− Often hard work to derive

− Not guaranteed to converge to global optimum

Brodersen (2010)
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Variational inference
Main idea

Posit a variational family of distributions over the latent variables q(z ; ν)
and fit the variational parameters ν to be close (in Kullback-Leibler
divergence) to the exact posterior

q(z ; ν)

νinit

ν∗

p(z |x)

KL (q(z |ν∗)||p(z |x))
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Variational inference
History

Variational inference (VI) adapts ideas from statistical physics to
probabilistic inference

1980s: Peterson and Anderson (1987) used mean-field methods to fit
a neural network
Early 1990s: This idea was picked up by Jordan’s lab who generalised it to
many probabilistic models (a review paper is Jordan, Ghahramani,
Jaakkola and Saul, 1999)

In parallel: Hinton and Van Camp (1993) developed mean-field for neural
networks. Neal and Hinton (1993) connected this idea to the EM
algorithm, which lead to further variational methods for mixtures of
experts (Waterhouse et al., 1996)
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Variational inference
Preliminary definitions

Entropy: (information theory) average rate at which information is
produced by a stochastic source of data

Given a random variable x with probability density function p(x)

H(x) = −
∫

p(x) log p(x)dx = Ep[− log p(x)]

Entropy increases as the distribution becomes broader
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Variational inference
Preliminary definitions

Kullback-Leibler divergence (relative entropy): measure of how one
probability distribution is different from a second, reference probability
distribution

p(z): unknown distribution
q(z): approximating distribution

KL(q||p) = −
∫

q(z) log

{
p(z)

q(z)

}
dz

= −
∫

q(z) log p(z)dz −
(
−
∫

q(z) log q(z)dz

)
︸ ︷︷ ︸

Entropy of q

Properties:

• KL(q||p) ≥ 0
• KL(q||p) = 0 iff p = q
• KL(q||p) 6= KL(p||q)
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Variational inference
The evidence lower bound (ELBO)

Recall

p(z |x) =
p(x , z)

p(x)

log p(x , z) = log [p(z |x)p(x)]

∫
log

p(x, z)

q(z)
q(z)dz =

∫
log

p(x)p(x|z)

q(z)
q(z)dz

∫
log

p(x , z)

q(z)
q(z)dz = log p(x)−

[
−
∫

log
p(z |x)

q(z)
q(z)dz

]
L(q)︸︷︷︸
ELBO

= log p(x)− KL(q||p)︸ ︷︷ ︸
KL divergence
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Variational inference
The evidence lower bound (ELBO)

log p(x) = L(q)︸︷︷︸
ELBO

+ KL(q||p)︸ ︷︷ ︸
KL divergence

KL(q||p) ≥ 0

log p(x) ≥ L(q)
log p(x)

L(q)

KL(q||p)

KL is intractable, so we optimise the ELBO instead
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Variational inference
The evidence lower bound (ELBO)

L(q) =

∫
log p(x , z)q(z)dz −

∫
log q(z)q(z)dz

= Eq[log p(x , z)]︸ ︷︷ ︸
(1)

Exp [log prior +
log likelihood]

+Eq[− log q(z)]︸ ︷︷ ︸
(2)

Entropy of q

The ELBO trades off two terms:

(1) Prefers q to place its mass on the maximum a posteriori estimate

(2) Encourages q to be diffuse

! The ELBO is not convex
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Variational inference
Some properties

Bishop (2006)

p(θ|x)

q(θ)

q(θ) tends to be 0 where p(θ|x) is 0.

p(θ|x)

q(θ)

VI may lead to a local minimum.
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Variational inference
Mean-field approximation

We need to specify the form of q(z). The mean-field family is fully
factorised:

q(z) =
M∏
i=1

qi (zi )

Optimise the ELBO. Traditionally, VI uses coordinate ascent:

log q∗i (zi ) ∝ Ej 6=i [log p(x , z)]

Iteratively update each parameter, holding others fixed.
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Variational inference
Coordinate ascent (CAVI) algorithm

Input : A model p(X , θ), a dataset X
Output : A variational density q(θ) =

∏
j qj(θj)

Initialise: Variational factors qj(θj)
do

for j ∈ {1, . . . , J} do
set qj(θj) ∝ exp{Ei 6=j [log p(X , θ)]}

end
compute the ELBO L(q)

while the ELBO has not converged ;
return q(θ).
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Mixture models
Main idea

p(x) =
K∑

k=1

πk fx(x |θk).

fx parametric density that depends on the parameter(s) θk
πk cluster weights

zn xnπ θk

n = 1, . . . ,N

Example: Mixture of Gaussians

xn ∼
∏
k

N (µk ,Λ
−1
k )znk

znk ∼ Bernoulli(πk)
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Mixture models
Expectation-Maximisation (EM) algorithm

Input : A model p(x , z |θ, π), a dataset X
Output : The parameters θ∗, π∗ maximising the log-likelihood
Initialise: Parameters π, θ, responsibilities E[znk ]
do

Expectation step: evaluate the responsibilities E[znk ]
Maximisation step: update the other parameters in turn

while convergence is not reached ;
return θ∗, π∗

17 / 26



Mixture models
...in the Bayesian framework

p(x) =
K∑

k=1

πk fx(x |θk).

fx parametric density that depends on the parameter(s) θk
πk cluster weights

zn xnπ θk

n = 1, . . . ,N k = 1, . . . ,K

Example: Mixture of Gaussians

π ∼ Dirichlet(α0, . . . , α0)

θ = {µ,Σ}
µk ∼ N (m0, (β0Λk)−1)

Λk ∼ W(W0, ν0)
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Variational inference for mixture models

Approximate the true posterior with a variational distribution q

q(z , θ, π) = q(z)q(θ, π)

EM-type algorithm

Input : A model p(x , z , π, θ), a dataset X
Output : A variational density q(z∗, π∗, θ∗) = q(z∗)q(π∗, θ∗)
Initialise: Parameters π, θ, responsibilities E[znk ]
do

Expectation step: evaluate the responsibilities E[znk ]
Maximisation step: update the other hyperparameters in turn

while the ELBO has not converged ;
return q(z∗, π∗, θ∗)

Bishop (2006)
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Variational inference for mixture models
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Variational inference for mixture models

L
(q
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0
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Lower bound used to check:
• Correctness of update equations
• Convergence
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Mixture models
Feature selection

p(x) =
∑
k

πk
∏
j

pxj (xj |θk)γjpxj (xj |θ0)1−γj

γj ∼ Bernoulli(δj)

zn xnπ θk

θ0 γj

N K

J
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Our project
Plan

Implementation and analysis of the following mixtures using VI:

Basic model Feature selection Model selection
Gaussian ∼ ∼

Categorical
Gaussian + Categorical

∼

already studied in the literature, code available online
(Bishop 2006, Ahlmann-Eltze and Yau 2018)

already studied in the literature, code not available online
(Constantinopoulos et al. 2006)
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Our project
Current status

Kucukelbir (2015)
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Our project
Future work

• Complete R package “vimix” https://acabassi.github.io/vimix/

• Apply to CVD risk data

• Explore automated tools?
E.g. TensorFlow Probability, PyMC3, Edward, Stan
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Thanks for listening!

R alessandra.cabassi@mrc-bsu.cam.ac.uk

� alessandracabassi.com

7 @SandyCabassi
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Figures credits
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https://commons.wikimedia.org/w/index.php?curid=7351905
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