Variational inference for mixture models

Alessandra Cabassi
Dr Paul D. W. Kirk

24 April 2019

Motivation

Multi-omic analysis of cardiovascular disease (CVD) risk data with Dr Denis Seyres and Dr Mattia Frontini - Department of Hæmatology

CVD risk data	Cell type	Variables	Observations
Epigenomics		25600	172
	\ddots	26300	128
Methylomics		26214	193
	2	21442	187
Transcriptomics		11370	203
	2	24224	198
Lipidomics	-	123	192
Metabolomics	-	988	200

We need:

- Scalable approximate inference method for mixture models
- That allows to combine different types of data
- And to perform feature selection

Motivation

Why feature selection?

Example: Mixture of Gaussians

! Noisy features can degrade the performance of most learning algorithms Law et al. (2004)

Motivation

Why feature selection?
Example: Mixture of Gaussians fitted using both features

! Noisy features can degrade the performance of most learning algorithms Law et al. (2004)

Motivation

Why feature selection?
Example: Mixture of Gaussians fitted using only the relevant feature

! Noisy features can degrade the performance of most learning algorithms Law et al. (2004)

Approximate inference

Why?

Given a joint model for our hidden variables z and observed variables x, $p(x, z)$, inference about the unknown is through the posterior

$$
p(z \mid x)=\frac{p(z, x)}{p(x)}
$$

For most interesting models, the denominator is not tractable, so we appeal to approximate posterior inference

Approximate inference

Which type?

Stochastic approximations \rightarrow Sampling

+ Asymptotically exact
+ Easily applicable general-purpose algorithms
- Computationally expensive
- Storage intensive

Deterministic approximations \rightarrow Structural assumptions

+ Computationally efficient
+ Efficient representation
- Often hard work to derive
- Not guaranteed to converge to global optimum

Brodersen (2010)

Variational inference

Main idea

Posit a variational family of distributions over the latent variables $q(z ; \nu)$ and fit the variational parameters ν to be close (in Kullback-Leibler divergence) to the exact posterior

Variational inference

History

Variational inference (VI) adapts ideas from statistical physics to probabilistic inference

Variational inference

History

Variational inference (VI) adapts ideas from statistical physics to probabilistic inference

1980s: Peterson and Anderson (1987) used mean-field methods to fit a neural network

Variational inference

History

Variational inference (VI) adapts ideas from statistical physics to probabilistic inference

1980s: Peterson and Anderson (1987) used mean-field methods to fit a neural network
Early 1990s: This idea was picked up by Jordan's lab who generalised it to many probabilistic models (a review paper is Jordan, Ghahramani, Jaakkola and Saul, 1999)

Variational inference

History

Variational inference (VI) adapts ideas from statistical physics to probabilistic inference

1980s: Peterson and Anderson (1987) used mean-field methods to fit a neural network
Early 1990s: This idea was picked up by Jordan's lab who generalised it to many probabilistic models (a review paper is Jordan, Ghahramani, Jaakkola and Saul, 1999)

IN In parallel: Hinton and Van Camp (1993) developed mean-field for neural networks. Neal and Hinton (1993) connected this idea to the EM algorithm, which lead to further variational methods for mixtures of experts (Waterhouse et al., 1996)

Variational inference

Preliminary definitions

Entropy: (information theory) average rate at which information is produced by a stochastic source of data

Given a random variable x with probability density function $p(x)$

$$
H(x)=-\int p(x) \log p(x) d x=\mathbb{E}_{p}[-\log p(x)]
$$

Entropy increases as the distribution becomes broader

Variational inference

Preliminary definitions

Kullback-Leibler divergence (relative entropy): measure of how one probability distribution is different from a second, reference probability distribution
$p(z)$: unknown distribution
$q(z)$: approximating distribution

$$
\begin{aligned}
\mathrm{KL}(q \| p) & =-\int q(z) \log \left\{\frac{p(z)}{q(z)}\right\} d z \\
& =-\int q(z) \log p(z) d z-\underbrace{\left(-\int q(z) \log q(z) d z\right)}_{\text {Entropy of } \mathrm{q}}
\end{aligned}
$$

Properties:

- $\mathrm{KL}(q \| p) \geq 0$
- $\operatorname{KL}(q \| p)=0$ iff $p=q$
- KL(q\|p) $=\mathrm{KL}(p \| q)$

Variational inference

The evidence lower bound (ELBO)

Recall

$$
\begin{gathered}
p(z \mid x)=\frac{p(x, z)}{p(x)} \\
\log p(x, z)=\log [p(z \mid x) p(x)] \\
\int \log \frac{\boldsymbol{p}(\mathbf{x}, \mathbf{z})}{q(z)} q(z) d z=\int \log \frac{\boldsymbol{p}(\mathbf{x}) \boldsymbol{p}(\boldsymbol{x} \mid \boldsymbol{z})}{q(z)} q(z) d z \\
\int \log \frac{p(x, z)}{q(z)} q(z) d z=\log p(x)-\left[-\int \log \frac{p(z \mid x)}{q(z)} q(z) d z\right] \\
\underbrace{\mathcal{L}(q)}_{\text {ELBO }}=\log p(x)-\underbrace{K L(q \| p)}_{\text {KL divergence }}
\end{gathered}
$$

Variational inference

The evidence lower bound (ELBO)

$$
\log p(x)=\underbrace{\mathcal{L}(q)}_{\text {ELBO }}+\underbrace{K L(q \| p)}_{\text {KL divergence }}
$$

$$
\begin{gathered}
\mathrm{KL}(q \| p) \geq 0 \\
\log p(x) \geq \mathcal{L}(q)
\end{gathered}
$$

KL is intractable, so we optimise the ELBO instead

Variational inference

$$
\begin{aligned}
\mathcal{L}(q) & =\int \log p(x, z) q(z) d z-\int \log q(z) q(z) d z \\
& =\underbrace{\int \underbrace{}_{\text {Entropy of } \mathrm{q}} \mathrm{E}_{q}[-\log q(z)]}_{\begin{array}{c}
(1) \\
\begin{array}{c}
\text { Exp [log prior }+ \\
\log \text { likelihood] }
\end{array}
\end{array} \mathrm{E}_{q}[\log p(x, z)]}
\end{aligned}
$$

The ELBO trades off two terms:
(1) Prefers q to place its mass on the maximum a posteriori estimate
(2) Encourages q to be diffuse
! The ELBO is not convex

Variational inference

Some properties

Bishop (2006)

$q(\theta)$ tends to be 0 where $p(\theta \mid x)$ is 0 .
VI may lead to a local minimum.

Variational inference

Mean-field approximation

We need to specify the form of $q(z)$. The mean-field family is fully factorised:

$$
q(z)=\prod_{i=1}^{M} q_{i}\left(z_{i}\right)
$$

Optimise the ELBO. Traditionally, VI uses coordinate ascent:

$$
\log q_{i}^{*}\left(z_{i}\right) \propto \mathbb{E}_{j \neq i}[\log p(x, z)]
$$

Iteratively update each parameter, holding others fixed.

Variational inference

Coordinate ascent (CAVI) algorithm

Input : A model $p(X, \theta)$, a dataset X
Output : A variational density $q(\theta)=\prod_{j} q_{j}\left(\theta_{j}\right)$
Initialise: Variational factors $q_{j}\left(\theta_{j}\right)$
do
for $j \in\{1, \ldots, J\}$ do
set $q_{j}\left(\theta_{j}\right) \propto \exp \left\{\mathbb{E}_{i \neq j}[\log p(X, \theta)]\right\}$
end
compute the ELBO $\mathcal{L}(q)$
while the ELBO has not converged;
return $q(\theta)$.

Mixture models

Main idea

$$
p(x)=\sum_{k=1}^{K} \pi_{k} f_{x}\left(x \mid \theta_{k}\right)
$$

f_{x} parametric density that depends on the parameter(s) θ_{k} π_{k} cluster weights

Example: Mixture of Gaussians

$$
\begin{gathered}
x_{n} \sim \prod_{k} \mathcal{N}\left(\mu_{k}, \Lambda_{k}^{-1}\right)^{z_{n k}} \\
z_{n k} \sim \operatorname{Bernoulli}\left(\pi_{k}\right)
\end{gathered}
$$

Mixture models

Expectation-Maximisation (EM) algorithm

Input : A model $p(x, z \mid \theta, \pi)$, a dataset X
Output : The parameters θ^{*}, π^{*} maximising the log-likelihood Initialise: Parameters π, θ, responsibilities $\mathbb{E}\left[z_{n k}\right]$
do
Expectation step: evaluate the responsibilities $\mathbb{E}\left[z_{n k}\right]$ Maximisation step: update the other parameters in turn while convergence is not reached;
return θ^{*}, π^{*}

Mixture models

...in the Bayesian framework

$$
p(x)=\sum_{k=1}^{K} \pi_{k} f_{x}\left(x \mid \theta_{k}\right)
$$

f_{x} parametric density that depends on the parameter(s) θ_{k} π_{k} cluster weights

Example: Mixture of Gaussians

$$
\begin{gathered}
\pi \sim \operatorname{Dirichlet}\left(\alpha_{0}, \ldots, \alpha_{0}\right) \\
\theta=\{\mu, \Sigma\} \\
\mu_{k} \sim \mathcal{N}\left(m_{0},\left(\beta_{0} \Lambda_{k}\right)^{-1}\right) \\
\Lambda_{k} \sim \mathcal{W}\left(W_{0}, \nu_{0}\right)
\end{gathered}
$$

Variational inference for mixture models

Approximate the true posterior with a variational distribution q

$$
q(z, \theta, \pi)=q(z) q(\theta, \pi)
$$

EM-type algorithm
Input : A model $p(x, z, \pi, \theta)$, a dataset X
Output : A variational density $q\left(z^{*}, \pi^{*}, \theta^{*}\right)=q\left(z^{*}\right) q\left(\pi^{*}, \theta^{*}\right)$
Initialise: Parameters π, θ, responsibilities $\mathbb{E}\left[z_{n k}\right]$
do
Expectation step: evaluate the responsibilities $\mathbb{E}\left[z_{n k}\right]$
Maximisation step: update the other hyperparameters in turn
while the ELBO has not converged;
return $q\left(z^{*}, \pi^{*}, \theta^{*}\right)$
Bishop (2006)

Variational inference for mixture models

Variational inference for mixture models

Variational inference for mixture models

Variational inference for mixture models

Variational inference for mixture models

Lower bound used to check:

- Correctness of update equations
- Convergence

Mixture models
Feature selection

$$
\begin{gathered}
p(x)=\sum_{k} \pi_{k} \prod_{j} p_{x_{j}}\left(x_{j} \mid \theta_{k}\right)^{\gamma_{j}} p_{x_{j}}\left(x_{j} \mid \theta_{0}\right)^{1-\gamma_{j}} \\
\gamma_{j} \sim \operatorname{Bernoulli}\left(\delta_{j}\right)
\end{gathered}
$$

Our project

Plan

Implementation and analysis of the following mixtures using VI:

	Basic model	Feature selection	Model selection
Gaussian	\checkmark	\sim	\sim
Categorical	\checkmark		

already studied in the literature, code available online (Bishop 2006, Ahlmann-Eltze and Yau 2018)
already studied in the literature, code not available online (Constantinopoulos et al. 2006)

Our project

Current status

Figure 1: The "how hard could it be?"TM way of probabilistic modeling.

Kucukelbir (2015)

Our project

Current status

Figure 1: The "how hard could it be?"TM way of probabilistic modeling.

Kucukelbir (2015)

Our project

Future work

- Complete R package "vimix" https://acabassi.github.io/vimix/
- Apply to CVD risk data
- Explore automated tools?
E.g. TensorFlow Probability, PyMC3, Edward, Stan

Figure 3: The probabilistic programming way of probabilistic modeling.

Thanks for listening!

MRC
 Biostatistics Unit
 CAMBRIDGE

alessandra.cabassi@mrc-bsu.cam.ac.uk
ヘ

- @SandyCabassi

References I

Ahlmann-Eltze, C. and Yau, C., 2018.
MixDir: Scalable Bayesian Clustering for High-Dimensional Categorical Data.
In IEEE 5th International Conference on Data Science and Advanced Analytics.
Bishop, C.M., 2006.
Pattern recognition and machine learning.
Springer, 128.
Blei, D.M., Kucukelbir, A. and McAuliffe, J.D., 2017.
Variational inference: A review for statisticians.
Journal of the American Statistical Association, 112(518), pp.859-877.
Corduneanu, A. and Bishop, C.M., 2001.
Variational Bayesian model selection for mixture distributions.
Artificial intelligence and Statistics, vol. 2001, pp. 27-34.
Constantinopoulos, C., Titsias, M.K. and Likas, A., 2006.
Bayesian feature and model selection for Gaussian mixture models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(6), pp.1013-1018.

Guan, Y., Dy*, J.G., Niu, D. and Ghahramani, Z., 2010.
Variational inference for nonparametric multiple clustering.
MultiClust Workshop, KDD-2010.

* The only woman in this bibliography!

References II

Hinton, G. and Van Camp, D., 1993.
Keeping neural networks simple by minimizing the description length of the weights.
In in Proc. of the 6th Ann. ACM Conf. on Computational Learning Theory.
Jordan, M.I., Ghahramani, Z., Jaakkola, T.S. and Saul, L.K., 1999.
An introduction to variational methods for graphical models.
Machine learning, 37(2), pp.183-233.
Kucukelbir, A., 2015.
Probabilistic Modeling in Stan.
Notes
Law, M.H., Figueiredo, M.A. and Jain, A.K., 2004.
Simultaneous feature selection and clustering using mixture models.
IEEE transactions on pattern analysis and machine intelligence, 26(9), pp.1154-1166.
Neal, R.M. and Hinton, G.E., 1998.
A view of the EM algorithm that justifies incremental, sparse, and other variants.
In Learning in graphical models (pp. 355-368). Springer, Dordrecht.
Peterson, C., and Anderson, J.R., 1987.
A mean field theory learning algorithm for neural networks.
Complex Systems, 1, pp.995-1019.

Figures credits

Slide 1
 Denis Seyres

Slide 2
Mikael Häggström and A. Rad
Image:Hematopoiesis (human) diagram.png by A. Rad, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=7351905

