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Multimodal and mixed-domain data:
Structural networks: anatomical interconnections among brain
regions;
Dynamic functional activity: dynamical activity of each brain
region during fMRI;
Functional networks: synchronization in brain activity for each
pair of brain regions

V = 70 brain regions with corresponding location and lobe
information;

n = 24 subjects with k = 2 scans each and additional information
on age, handedness and psychological traits.



Aim and motivation
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Provide some insights about some of the statistical issues arising
when dealing with analysis of MRI scans;

Different perspectives and goals:
1. Test correspondence among anatomical and functional
connectivity;

2. Check quality of available data estimating the effective
number of white matter fibers connecting brain regions;

3. Define a metric for functional networks in order to test for
differences in functional connectivity of different groups of
people.
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Background
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Neurological hypothesis: functional connectome is strongly related
to the underlying structural networks;

Nature of this relation is not completely clear yet:
Is it possible to infer anatomical connections from functional
ones?
How does the relation vary with time?

Aim: Is the absence of white matter fiber connecting brain regions
reflected in their functional correlation?



Literature review
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Graphical models: probabilistic models where a graph is used to
express the conditional dependence between sets of random
variables;

Let X be an n × p matrix with {Xi1, . . . , Xip} ∼ N(0, Σ) and denote
the precision matrix as Θ = Σ−1;

Associating a node to each variable, the absence of an edge
connecting nodes i and j indicates conditional independence
among Xi and Xj;

Maximizing Lp(Θ) = log`Θ` − tr(SΘ), where S = XTX/n, we get
Θ̂ = S−1→ what if p > n?



Literature review
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Friedman et al. (2008) proposed the graphical lasso;

Idea: minimize the penalized profile likelihood

Lpen,p = log`Θ` − tr(SΘ) − λ``Θ``1

where ``Θ``1 =
∑
i,jΘij;

It provides Θ̂ even when S is singular and induces a sparse
representation of the dependence among observed variables.

Several inferential tools proposed to test if conditional
dependences are statistically significant.



Proposed methodology
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Proposal: parametric bootstrap based test to check if absence of
white matter fiber between regions is reflected in absence of a
functional correlation among them;

More sintetically:

H0 : Ω = Ω0 vs H1 : Ω , Ω0

where Ω and Ω0 are correlations matrices with the second one
constrained by external information.



Proposed methodology
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X, n × p matrix of functional activities of p brain regions measured
on n subjects, while D is a p × p structural network matrix;

Estimate, via glasso, C∗ s.t. (C∗)−1ij = 0 iff Dij = 0 for all n subjects
and obtain C∗1 , . . . , C

∗
B matrices sampling from Wishart distribution

with scale matrix C∗;

Let S(c) be the sum of squared correlations among unconnected
regions
→ compare it with the bootstrap distribution of S(c∗i ) with i, . . . , B;

Compute bootstrap p-value.



Results
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Temporal dimension is stacked allowing to consider Wishart
distribution as the sampling one;

Results are consisten with usual assumption in neuroscientific
community;

Similar results have been obtained considering LRT, even if tests
have different rationale.



Conclusions
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We propose a simple and fast test to study the relation between
functional and anatomical connectivity among brain regions;

New directions

Study in greater details the properties of the test (e.g. the power)
and compare with other solutions;

Handle carefully time information;

Incorporate spatial information (distances between regions) and
characteristics of the specific subjects.
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DTI white matter fiber count validation
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DTI scan is a rather
approximate techniques.

It includes multiple source of
variability⇒ Scanner, lab,
pre-processing & Individual.

This uncertainty might lead to
misleading results.

To achieve more robust results we aim to estimate the unknown
number of white matter fiber for each pair of brain region.

We propose a hierarchical Bayesian model.



Our proposed approach
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({nkij : k = 1, . . . , K}) ∼ Bin(Mij, πj),

logit(πj) = αj + αMatchHemispherej,

Mij ∼ Pois(λij),

log(λij) = βi + βj + βagei.



Application to DTI data I
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Model based average of the weighted structural network

3.5 6.5 10.0 13.5

Sample average of the weighted structural network

0.0 2.5 5.0 7.5 10.0

Identified active areas agree with observed ones.

As expected we find an higher number of white matter fibers.



Application to DTI data II
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the distribution of πjs gives
info on regions in which is
easier to observe
connections.

Connection with high
probabilities to be observed
share the same right
hemisphere.



Conclusion
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DTI are still a valid source of information even if they should be
used with care.

Pre-processing and external source of information should be
always be included in the model.

In our opinion our proposed approach can mitigate undercount
effect and be integrated in more refined analysis
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Object-Oriented
analysisofnetworkdata



Goal
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Object Oriented Data Analysis: statistics for complex objects
E.g. Directed acyclic graphs, tensors, shapes, images, networks.
Main idea:

Consider complex objects as the statistical units of our analysis;

Analyse the data in the mathematical space in which they live.

Our goal: To define an object-oriented framework for structural and
functional networks. In particular, we wish to define:

A distance between networks;

A test for the equality of the average networks of multiple groups.



Literature review
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Reducing each observed network to a vector of summary statistics.

Univariate testing approaches considering each edge separately
adjusted to control FDR or FWER taking into account the network
structure.

Use of auxiliary data (e.g. spatial proximity) to inform the posterior
probability that some pairs of nodes interact differently.

Durante and Dunson (2017) develop a Bayesian procedure for
inference and testing of group differences in the network structure.

Ginestet et al. (2017) test the equality of two groups of networks
using the concept of Fréchet mean of networks and deriving a CLT
for sequences of network averages, using the Euclidean distance.
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Distances
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Procrustes size-and-shape distance

dP(G1, G2) = inf
R∈O(D)

‖L1 − L2R‖ (1)

where
Li decomposition of Gi s.t. Gi = LiL′i , i = 1, 2;
‖·‖ Frobenius norm;
D set of unitary operators.

Gromov-Wasserstein distance

dGH =
1
2
inf
R
‖dX(x, x′) − dY(y, y′)‖LpR×R (2)

where
R ∈ R(X; Y), set of all correspondences between X and Y;
(X, dX) and (Y, dY) compact metric spaces.



Exploratory analysis
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Heatmap of the Procrustes
distances.

Hierarchical clustering.



Test for the equality
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G11, . . . , GN11 and G12, . . . , GN22 two groups of adjacency matrices,
iid samples from 2 random processes with mean Γ1 and Γ2.

H0 : Γ1 = Γ2 against H1 : Γ1 , Γ2. (3)

Similar strategy to the one used by Pigoli et al. (2014) for testing the
equality of covariance operators of functional data, i.e. reformulate test
as

H0 : d(Γ1, Γ2) = 0 against H1 : d(Γ1, Γ2) > 0 (4)

Also possible to extend to the case of multiple groups (Cabassi et al.
2017).
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Two-sample permutation test
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Given a sample G1, . . . , GN of independent and identically distributed
observations, the sample Fréchet mean is

Γ̂ = arg inf
Γ

N∑
n=1

d(Gn, Γ)2. (5)

Algorithm

1. Compute d(Γ̂1, Γ̂2), with Γ̂i sample Fréchet mean of group i;
2. Apply B random permutations to the labels of the sample graphs;
3. For each of them compute d(Γ̂∗1 , Γ̂

∗
2 );

4. The p-value of the test is

λ =

∑
1
�
d(Γ̂∗1 , Γ̂

∗
2 ) ≥ d(Γ̂1, Γ̂2)

�

B
.
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Tests for the real data
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Test p-value Adjusted p-value
1. Mental disorder diagnosis 0.914 1
2. Under vs. over 30 0.634 1
3. Under vs. over 50 0.091 0.273

Tablep-values of the tests.

Issues

Probably need more observations;

Not clear how to choose threshold for the age limit.
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Concluding remarks
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Summary

No assumptions on the data generating process;

Computationally intensive.

Future work

Implement test using Gromov-Wasserstein distance;

Compare to state-of-the-art methods where possible.
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