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Evolutionary biology data set

Swallow et al. (1998)

Goal: Estimate the heritability of voluntary wheel-running behaviour in mice

Artificial selection of house mice for increased voluntary wheel running

• 10th generation
• 4 selected lines, 4 control lines, 20 mice per line
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Functional data analysis

Functional variable

Mean function

Covariance operator

Hilbert-Schmidt kernel of Σ

X : Ω→ L2(I ), I ⊆ R

µ(t) = E[X (t)], t ∈ I

Σ(y) = E[〈X − E(X ), y〉(X − E[X ])], y ∈ L2(I )

σ(s, t) = E[(X (t)− µ(t)) · (X (s)− µ(s))], s, t ∈ I

Evolutionary biology data set
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Number of revolutions run per week.
Smoothed and aligned data.
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Objective

Consider q groups of samples of random curves, realisations of random
processes with mean µi and covariance operator Σi

xi,1, xi,2 . . . , xi,ni ∈ L2(I ), i = 1, . . . , q.

We wish to test the hypothesis

H0 : {Σ1 = . . . = Σq} against H1 : {at least one equality is not true}

and, if H0 is rejected, perform pairwise comparisons between the groups.
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Two-sample permutation test

Pigoli et al. (2014)

If q = 2, we can reformulate the test as follows

H0 : d(Σ1,Σ2) = 0 against H1 : d(Σ1,Σ2) > 0

where d(·, ·) is some distance between two covariance operators.

Algorithm
1. If µ1 6= µ2, let x̃ij = xij −mi , with mi sample mean of group i
2. Compute d(S1, S2), with Si sample covariance operator of group i
3. Apply B random permutations to the labels of the sample curves
4. For each of them compute d(S∗1 ,S

∗
2 )

5. The p-value of the test is

λ =

∑
1
[
d(S∗1 , S

∗
2 ) ≥ d(S1,S2)

]
B

d(S∗1 , S
∗
2 )
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Distances between covariance operators

Pigoli et al. (2014)

• Kernel distance

dL(Σ1,Σ2) = ‖σ1 − σ2‖L2(I×I ) =

√∫
I

∫
I

(σ1(s, t)− σ2(s, t))2dsdt

• Square root matrix distance

dR(Σ1,Σ2) = ‖(Σ1)1/2 − (Σ2)1/2‖HS
= trace[(Σ

1/2
1 − Σ

1/2
2 )′(Σ

1/2
1 − Σ

1/2
2 )]

• Procrustes size-and-shapes distance

dP(Σ1,Σ2)2 = infR∈O(L2)‖L1 − L2R‖2
HS

= ‖L1‖2
HS + ‖L2‖2

HS − 2
+∞∑
n=1

ρn

Li : Σi = LiL
′
i for i = 1, 2

O(L2): Space of unitary operators on L2(I )
ρn: Eigenvalues of L′2L1
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Non-parametric combination methodology

Global null hypothesis: intersection of partial null hypotheses

H0 :
⋂
i 6=j

H ij
0 , H ij

0 : {Σi = Σj}

Global alternative hypothesis: union of partial alternative hypotheses

H1 :
⋃
i 6=j

H ij
1 , H ij

1 : {Σi 6= Σj}

Idea: Combine all the k = q(q-1)/2 pairwise comparisons in a global test via
the non-parametric combination methodology.

We define

Tij = Tij(X ) partial test statistics for testing H ij
0 against H ij

1

T = T(X ) k-dimensional vector of test statistics

Ψ : Rk → R1 combining function
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Non-parametric combination methodology

Pesarin and Salmaso (2010)

The NPC accounts for dependencies among partial statistics by obtaining their
joint permutation null distribution.
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Synchronised permutations

Solari et al. (2009)

Data set Pseudo-data matrix
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Synchronized permutations allow both maintaining the dependencies among
partial tests and involving the observations of each comparison at the same
time.
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Some admissible combining functions

Pesarin and Salmaso (2010)

• Fisher’s

TF = −2
∑
i

log(λi )

• Liptack’s

TL =
∑
i

φ−1(1− λi )

• Tippett’s

TT = min
1≤i≤k

λi

• Direct combination

TD =
∑
i

λi
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Post-hoc comparisons

Closed testing procedure, Marcus et al. (1976)

• Can be used with any combining function

• High number of steps

• Very conservative

Step-down procedure, Westfall and Young (1993)

• Only for Tippett combining function

• Iterative procedure, only k steps

• Less conservative
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Synthetic data

Ramsay and Silverman (2005), Berkeley growth study data set

N = 20, p = 31
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Empirical power of the test

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

γ

4
6
8
10

(a) One of the groups has covariance
operator equal to Σ1, the others Σ(γ).
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(b) Half of the groups have covariance
equal to Σ1, the others Σ(γ).

Synchronised permutation global tests applied to the first case study using Tippett
combining function, with an increasing number of data samples.
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Comparison with similar tests
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(b) Non-Gaussian data.

Synthetic data are generated from a Gaussian process and a multivariate t-Student.
The combining function is Tippett.
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Missing datum

A mouse died of unknown causes at the beginning of the experiment.

Pesarin and Salmaso (2010)

Notation

O: inclusion indicator associated to X

F [t|(X,O)], t ∈ Rk : permutation distribution of the test statistic T

κ = [κ1, . . . , κq]: actual sample sizes of valid data in each group

Hypotheses

Data are missing completely at random.

Under H0, the permutation distribution of Ti depends only on κi

H0 : {(X1,O1)
d
= . . .

d
= (Xq,Oq)} against H1 : {H0 is not true}

Then, it suffices to prove that F [t|(X,κ)] = F [t|(X,κ∗)]

Here: T ∗i = d(S∗i , S
∗
j ) symmetric, k∗i = 20, k∗j = 19 ∨ k∗i = 19, k∗j = 20
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Test on the covariance operators
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Summary and future work

Summary

• No assumptions on the data generating process

• Works with any distance

• Straightforward post-hoc comparisons if groups are balanced

• Computationally intensive

Future work

• Handling of missing data and unbalanced groups

• Implementation in C++

References

Alessandra Cabassi, Davide Pigoli, Piercesare Secchi and Patrick A Carter (2017).
Permutation tests for the equality of covariance operators of functional data with applications to
evolutionary biology. Electron. J. Statist. 11, no. 2, 3815–3840.

Alessandra Cabassi and Adam B Kashlak (2017).
fdcov: Analysis of Covariance Operators.
R package version 1.1.0.
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Extension to network data

Joint work with

Matteo Fontana, Politecnico di Milano & Prof Alessio Farcomeni, La Sapienza Università di Roma.

Goal: Test for differences in brain functional connectivity of two or more
groups of patients

Functional network of a brain:
nodes = regions of interest,

edges = correlation of brain activity.

Consider q groups of functional brain
networks, realisations of random
processes with mean Γi

Gi,1,Gi,2 . . . ,Gi,ni , i = 1, . . . , q.

We wish to test the hypothesis

H0 : {Γ1 = . . . = Γq} against

H1 : {at least one equality is not true}

and, if H0 is rejected, perform pairwise
comparisons between the groups.
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Goal: Test for differences in brain functional connectivity of two or more
groups of patients

Functional network of a brain:
nodes = regions of interest,

edges = correlation of brain activity.

Consider q groups of functional brain
networks, realisations of random
processes with mean Γi

Gi,1,Gi,2 . . . ,Gi,ni , i = 1, . . . , q.

We wish to test the hypothesis

H0 : {Γ1 = . . . = Γq} against

H1 : {at least one equality is not true}

and, if H0 is rejected, perform pairwise
comparisons between the groups.

Permutation tests for the equality of covariance operators Extension to network data 11 June 2018 18 / 20



Extension to network data

Idea: Identify functional networks as positive semi-definite matrices.

So the test can be performed similarly to before:

• Test statistic:
d(Γ̂i , Γ̂j),

where Γ̂i sample Fréchet mean of the functional networks Gi,m

Γ̂i = arg inf
Γ

ni∑
m=1

d(Gi,m, Γ)2.

• Distances: finite-dimensional versions of the kernel, square root, and
Procrustes distances.

Reference

Alessandra Cabassi, Alessandro Casa, Matteo Fontana, Massimiliano Russo and Alessio Farcomeni.
Three Testing Perspectives on Connectome Data.
Under review.
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Thanks for listening!

� alessandracabassi.wordpress.com

R ac2051@cam.ac.uk

7 @sandy.cabassi
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Raw data
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(b) Selected lines

Number of revolutions run per week.
Raw data.
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Smoothing

Ramsay and Silverman (2005), Penalised Sum of Squared Errors

PENSSEδ(x |y) = [y − x(t)]′W [y − x(t)] + δ PEN(x)

Sum of squared errors

Roughness penalty term

SMSSE(y|c) = (y − Πc)′W (y − Πc)

PEN2(x) = ‖ẍ‖2 =
∫
I
[ẍ(s)]2ds

De Boor (2002)

PENSSEδ(x |y) is minimised by a cubic spline with breakpoints at the data points.

Craven and Wahba (1978)

δ̂ = arg min
δ∈(0,+∞)

GCV(δ) = arg min
δ∈(0,+∞)

(
p

p − df(δ)

)(
SSE

p − df(δ)

)
df(δ): number of degrees of freedom of the spline
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Smoothing
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Generalisation of Levene’s test

Levene (1960), Anderson (2006)

Perform ANOVA analysis on the distances from individual points within each
group to the group centroid, i.e. the sample functional mean:

zij = d(xij , x̄j), ∀i , j .

In other words, compare the test statistic

T =
n − q

q − 1

∑q
i=1(z̄i − z̄)2∑q

i=1

∑ni
j=1(zij − z̄i )2

against F (α, q − 1, n − q).
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Asymptotic approach

Dauxois et al. (1982)

If E‖Xij‖4 <∞, then
√
ni (Si − Σi ) converges in distribution to a zero-mean

Gaussian random element of F , the Hilbert space of Hilbert-Schmidt operators,
with covariance operator Υi .

Boente et al. (2014)

Given a sample xi,1, . . . , xi,ni , let Υ̂i be consistent estimators of Υi i = 1, 2.

1. Define Υ̂ = τ̂−1
1 Υ̂1 + τ̂−1

2 Υ̂2 with τ̂i = ni/(n1 + n2).

2. For 1 ≤ l ≤ qn denote by ι̂l the positive eigenvalues of Υ̂

3. Generate Z∗1 , . . . ,Z
∗
qn i.i.d. such that Z∗i ∼ N (0, 1) and let

U∗n =

qn∑
j=1

ι̂jZ
∗2
j

4. Repeat the previous step B times, to get B values of U∗n
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Empirical bootstrap

Paparoditis and Sapatinas (2014)

The observed collection of random functions satisfy

xi,j(t) = µi (t) + εi,j(t), ∀i , j ∀t ∈ I .

Let T be a given test statistic of interest based on X .

1. Calculate x̄i,ni = ni
−1∑ni

j=1 xi,j , ∀i
2. Calculate εi,j = xi,j − x̄i,ni , ∀i , j .
3. Generate bootstrap functional pseudo-observations

x∗i,j = x̄i,ni + ε∗i,j , ∀i , j

where ε∗i,j = εI ,J and (I , J) is a pair of random variables.

4. Repeat B times and compute the test statistic T ∗

5. Compute the approximated distribution of T ∗

6. Reject H0 iff T > c∗α, where Pr(T ∗ > c∗α) = α.
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Non-asymptotic test based on concentration inequalities

Kashlak et al. (2016)

p-Schatten norm

‖Σ‖pp =

{
‖φ̃‖plp =

∑∞
n=1 |φ̃

p
n|, if p ∈ [1,∞),

maxn∈N |φ̃n|, if p =∞.

Confidence set{
Σ : ‖S − Σ‖p ≤ ‖Rn‖p + ς

[
− 2

n
log(2α)

]1/2

− ς log(2α)

3n

}
,

where Rn is the Rademacher average

Rn =
1

n

n∑
i=1

χi

[
(xi −m)⊗2 − S

]
.
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Synchronized permutations

Solari et al. (2009)

If the design is balanced, i.e. n1 = · · · = nC = n, we permute the rows of the
pseudo-data matrix

[
x1 x1 . . . xC−1

x2 x3 . . . xC

]
=



x1
1 x1

1 . . . xC−1
1

x1
2 x1

2 . . . xC−1
2

...
...

...
x1
n x1

n . . . xC−1
n

x2
1 x3

1 . . . xC
1

x2
2 x3

2 . . . xC
2

...
...

...
x2
n x3

n . . . xC
n


Synchronized permutations allow both maintaining the dependencies among
partial tests and involving the observations of each comparison at the same
time.
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Permutation strategies
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Non-parametric combination methodology

Pesarin and Salmaso (2010)

1st phase: estimating the k-variate distribution of T

1. Calculate the vector of observed values of tests: T0 = T(X )

2. Consider a random permutation X ∗ ∈ X/X of X and compute T∗ = T(X ∗)

3. Carry out B independent repetitions of the previous step:
{T(b)}Bb=1 is a random sampling from the permutation distribution of T

4. A consistent estimate of the CDF F (t|X/X ) is

F̂ (t|X/X ) =

∑
b 1(T(b) ≤ t)

B

5. A consistent estimate of pi = Pr{T ∗i ≥ t|X/X} is

p̂i (t|X/X ) =

∑
b 1(T

(b)
i ≥ t)

B
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Non-parametric combination methodology

Pesarin and Salmaso (2010)

2nd phase: simulating a procedure for NPC

1. The k observed p-values are estimated by λi = p̂i (T
0
i |X/X )

2. The combined observed value of the test is T 0
Ψ = Ψ(λ1, . . . , λk)

3. The bth combined value is

T
(b)
Ψ = Ψ(p̂

(b)
1 , . . . , p̂

(b)
k ), p̂

(b)
i = p̂i (T

(b)
i |X/X ) i = 1, . . . , k, b = 1, . . . ,B

4. The p-value of the combined test T is estimated as

λΨ =

∑
b 1(T

(b)
Ψ ≥ T 0

Ψ)

B

5. If λΨ ≤ α, H0 is rejected
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Post-hoc comparisons

Marcus et al. (1976)

Closed testing procedure

Consider the closure of the set, which is the set of all possible intersection
hypotheses.

1. Test all the hypotheses simultaneously by using permutation tests:

– Calculate the statistics TK̄ for each non-empty K̄ ⊆ {1, . . . , k};
– Perform B permutations
– Compute the permutation statistics T ∗K̄ for each non-empty K̄
– Calculate the raw p-values as

λK̄ =

∑
b 1
[
T ∗K̄ (b) ≥ TK̄

]
B

;

2. Reject any hypothesis H0i when the test of H0i itself is significant and the
test of every intersection hypothesis that includes H0i is significant.
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Post-hoc comparisons

Westfall and Young (1993)

Step-down procedure for Tippett combining function

Let λ(1), . . . , λ(k) be the increasing ordered partial p-values.

1. λ̃(1) = λ(1),...,(k),Tippett

– If λ̃(1) ≤ α, reject H0(1) and continue;
– Otherwise retain H0(1), . . . ,H0(k) and stop.

2. λ̃(i) = max{λ(i),...,(k),Tippett, λ̃(i−1)}
– If λ̃(i) ≤ α, reject also H0(i) and continue;
– Otherwise retain H0(i), . . . ,H0(k) and stop.
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Partial tests
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(b) Partial test,
samples 1 and 2.
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(c) Partial test,
samples 2 and 3.
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(d) Partial test,
samples 1 and 3.
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Speech recognition data set

Hastie et al. (1995)

200 samples in each group, 150 frequencies.
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Speech recognition data set, raw data.
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Test on the covariance operators
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Partial p-values of the synchronised permutation test on the covariance operators.
Global p-value is less than 1/1000.
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